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Analytic solutions of the Rayleigh equation for linear density profiles
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We consider the Rayleigh-Taylor instability in linear density profiles and we derive the exact analytic
expressions of the growth rates and associated eigenfunctions. We study the behavior of the multiple eigen-
values in both the short- and the long-wavelength limit. As the largest eigenygliyeeduces to the classical
Rayleigh growth rate; the other eigenvalues vanish as the front thickness tends to zero. Furthermore, the simple
expression ofyna, €xact to first order in the long-wavelength limit differs from the widely used estimate
VAKJ/(1+AkLy), whereg is the acceleratiorA the Atwood numberk the wave number of the perturbation,
andL, the minimum density gradient scale length.

PACS numbeps): 47.20-k, 52.35.Py

The interface between two fluids of different densities is This equation has been solved analytically by Lord Ray-
said to be Rayleigh-Taylor unstaljle,2] when the system is leigh for the particular case of an exponential density profile.
under the effect of a constant acceleration field directed toThe model of exponential transition profile has been consid-
ward the heavier fluid. This instability occurs in many inter- ered by several authors afterwdd5], as the transcendental
esting physical situations, such as implosion of inertial con-equation for the growth rates has quite a simple fgim
finement fusion capsules, core collapse of supernovae, aolving only exponentials nevertheless, it has to be solved
electromagnetic implosions of metal liners. The linear theorynumerically. Mikaelian calculated numerically the growth
of this instability has been widely studied by Chandrasekharates for any continuous profile, approximating the diffuse
[3] and other authorgsee, e.g., Kull[4] for a review and profile with a large number of fluid layer$0 approxima-
bibliography. In the classical case of two semi-infinite in- tion) [6], and obtained also explicit analytic approximated
compressible fluids of constant densitigs and p;, in a  growth rates with a moment equation metHa@d With the
constant acceleration fielglpointing toward the denser fluid use of variational calculus, Munrf8] sought the density
in the y direction normal to the interface, the linear theory profiles minimizing the growth rate for a given wavelength,
leads to a solutiom, cosxX)e W+ rast for an initial mono-  but he allowed density jumps at the boundaries of the graded
mode perturbatiom, coskx), where the growth rate in time density pad layer. We work here with continuous density

YelassIS given by profiles, looking more specifically at a piecewise linear pro-
file, which could also be seen asP4 approximation of any
pn—p . \Y? continuous profile.
Yolass™| 5 o k) 1) Hence we define for any>0,

. p for ys—e
andA=(py—p)/(pn+ p)) is the Atwood number of the sys-

tem. Ph—PI

In this paper, we study the stability of diffuse density pdy)=3 Pt 2€ (y+e) forly|<e ©)
profiles, which is relevant to several important physical ap-
plications. Using a Fourier expansion with respect to the
transverse coordinate we consider normal mode perturba- A rapid analysis of the Rayleigh equation gives & be-
tions proportional to efpt—ikx] and vanishing aty—  havior of a solutiorw, in the case of a continuous density

*o. Combination of the hydrodynamic equations leads toprofile. Solutions of Eq(2) for ly|> € are easily found:
the resolution of a second-order equation first obtained by

Lord Rayleigh[1]: v.=C_e¥ for y<—e,

pn for y=e.

4

v.=C,e ™ for y>e.
v(y)=0, (2

We now focus on Eq(2) in the intervall —€,e]. With the

d dv g dp
- @(P(y) d_y> +k2[P(y T 2dy
change of variable=p_(y), w(z)=v[p. satisfies the
wherev (y) describes the perturbed velocity of the fluid in foIIovging equation: ply). wz)=vlp )]

they direction. For a given wave numbé&r the determina-

tion of the admissible growth ratesbecomes an eigenvalue zW'+w' —[B%z—D]w=0, (5
problem, corresponding to eigenfunctions vanishing

at =, Here g(dp/dy)>0 is the unstable case, while whereB=2ke/(p,—p;) andD=(kg/y?)B.

g(dp/dy) <0 leads to stable gravity waves; in the following, ~ Substitutingw=e "B into Eq. (5) with the additional
we choosedp/dy>0 andg>0. change of variabl&=2Bz leads to the Kummer equation
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xf"+(b—x)f'—af=0, e *AlC;M(a,1z,)+C,U(a,1z,)]=C_,

with b=1 anda=3%(1—kg/y?). The confluent hypergeo- e kIA[C M(a,1z.)+CU(a 1z )]=C
metric functionsM(a,1x) and U(a,1x) are two linearly PR 2 o
independent solutions of this equation.

Hence, for—e<y<e, i.e., pj<z<py, the eigenfunction
can be written as

e “/A[CM’(a,12 )+ CoU"(a,12 )]=kKC, ,

wherez. =2ke(*=1+ 1/A). This system admits a nontrivial
w(z)=Ce B"M(a,1,2B2)+Cre ®%U(a,1,2Bz), (6)  Solution if and only if

whereC,; andC, are two constants. [M(a,1z )—M'(a,1z_)]U'(a,1z;)
Any admissible eigenvalue is given by a value ofa _ , ,
corresponding to a nontrivial solution of the matching prob- =[U(alz-)-U'(alz)M'(alzs). (7

lem aty= * € for v, and its derivative. This procedure leads . . . . .
to a system of four equations in the four unknowns This is a transcendental dispersion relation d&mwhich

(C4,C,,C_,C.), gives us a family of eigenvaluds,,,n=0), leading to mul-
tiple growth ratesy,, depending oA andke. The eigenfunc-
C/M'(a,1z,)+CyU'(a,1,z,)=0, tion V,, corresponding to the eigenvalag is given by

€ €
(U(an+1,2,z+)M a,,1,2k y+ +M(a,+1,2z,)U| a,,1,2k y+a )ek(y*f’A) for —e<y=<e
Vialy)= Vo(—e)Teke™y) for y<—e
Vi (e) ekeY) for y=e.
|

We are most interested M, corresponding to the maximal M'(a,1z)=aM(a+1,27),
growth rate. The functiolV, is always positive and reaches
its maximum forz* =2p,pn/(p,+ py), corresponding tg* U'(a,1z)=—aU(a+1,22),
=—¢€e+2ep,/(p,+pp) in the case of a linear density profile.
This result is important for approximate calculations of the zU(a+1,27)=U(a,12)—aU(a+1,12)

maximal growth rate, as these methods usually work with
approximate eigenfunction§ exp@* —|z), wherez* needs
to be guessefi7].

Itis po_ssible to solve r_1umerica||y the eigenvalue problem a ala+tl) 2 ,
(7) by using the symbolic mathematics packages of Math- M(a,b,z)=1+ —z+ —— = +0(2°),

d . N b~ b(b+1) 2

ematica Software. We found in any case an infinite number
of roots to Eq.(7). As an example, we will study the particu-

and the estimations in the smalkange

. 1
lar case ke=0.9, r=p,/p=10. The eigenmodes U(a,lz)=— ——[M(a,12)Inz+[4(a)— 2u(1
Vo,V1,V,, corresponding to the three largest growth rates (a.12) F(a)[ (a.12) L¥(@)=2¢(1)]
¥0=0.88yclass ¥1=0.47Yclass ¥2= 0.30yjassare shown in +aZ y(a+ l)_2¢(2)]+0(22),

Fig. 1. We see tha¥,, has exactlyn zeros, in agreement with
the theory of Sturm-Liouville problems. We can check also I'(a)
thatV, is peaking around* =2p,pn/(p,+ pn) =23. Even if Wa)=—=———, Plat+l)=y(a)+1lA.
ke is smaller than 1, the secondary growth rates are not I'(a)
totally negligible compared to the maximum growth rate ) o ) o
Solving numerically the dispersion relation for decreasing*SSUming that the limit of exists and is finitda, cas¢, we
values ofke shows heuristically that the largest solutiag ~ K€€P only the leading term ike, which gives forke~0,
is increasing, whereas, for n>0 are decreasinga,|| be-
coming very large. a=— P +0O(keln|kel),
The dispersion relatiof6) for ke~0 can be investigated Ph— P
theoretically by using the properties of the special functions
[9]. The same kind of analysis was done by Goncharov forvhich finally leads to
specific density profiles in the frame of the isobaric model
[10]. Our starting point is the explicit relations y(ke)=VAgK 1+ O(ke In|ke|)]. (8)
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FIG. 1. Eigenmoded/y, V4, V, corresponding to the three
largest growth rates versys The normalization is arbitrary.

This shows that, if an eigenvalue admits a limit whenis
approaching 0, then this limit is necessarily the classica

growth rateyAgk.
Going to higher order ifke gives finally

r’—1 I
———rinr

4r

(r—1)°

Agk

2

Yo

1+ AkLy

+O[(ke)2|n|ke|]], 9

where L, is the classical density profile scalelength
=min(p/p")=2ep/(pn—p)).-

Using the asymptotic expansions of the hypergeometri
functions in the largea range will give the asymptotic be-
havior of the other eigenvalues, ,n>0:

mn?
A~ 1/2 _ 1/292
that is
(ké)llz 1
7n(k6)~\/k—g nr (1+A)1/2+(1_A)1/2'

The n? equivalence of the eigenvalues, is a classical
result of Sturm-Liouville problemglL1]. Note that the results
obtained above have to be applied for fideavhenke ap-
proachs 0. Looking now at the largeerange, we have to use
the asymptotic expansions written in terms of Whittaker
functions[12]. After some algebra, we found that a neces-
sary condition for Eq(7) to be satisfied is

z 1
—4a
This leads to the classical resu,lﬁ~g/Lo for every growth
rate vy,

It is important to notice that the leading term of the ex-
pansion, proportional tM/U, becomes an Airy function
whenz_/—4a~1. Going to higher order leads to the behav-
ior
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FIG. 2. Qualitative representation ¢f, versus wave numbek
for a fixed Atwood numbeA and a stratification thickness

I
2 Ok

I KLt @y 1(KLp) ™

(10

wherew,, 1 is the (h+1)th zero of the Airy function.

Hence we got a quantification of the different growth
rates both in the small and in the long wave-number ranges.
As a summary, we represent in Fig. 2 the growth raggs
versus wave numbe, for a fixed Atwood numbeA and a
stratification thicknesg. In some degree, the drawing is ar-
bitrary in the intermediat& range, as we only know that the
growth rates are monotonic functions of the wave number
[10]. It is important to note that, even if,<y, for n>0

(Yvhen the stratification thickness is small compared to the

wavelength of the perturbation=27/Kk, all the growth rates
are leading to the same asymptote in the small-wavelength
range. We can also illustrate on this particular density profile
the discrepancy betweeny, and the formula
VAkY/(1+AkLy), widely used in the inertial confinement
fusion context withA=1 [13]. This formula can be consid-
ered as a fairly good approximation of the growth rate as it
reproduces correctly the short- and the long-wavelength lim-
its

lim y(k)=+g/Lo.

k— + o0

lim (k)= VAgk,

k—0

The difference between this formula and the exact first-order
corrections to the growth rate in the long-wavelength range
given by Eq.(8) is illustrated in Fig. 3 by plottind_.¢/Lg

2
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FIG. 3. L¢i/Lg versus the density ratio, where Log=L[4r/

(r—1°(r>=2)/2—r Inr].
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versus the density ratia, where Log=Lo[4r/(r—1)°](r>  ensure an appropriate potential in the Sclimger-like analy-
—1)/2—r Inr]. The functionL . /Ly increases monotonically sis to prove the existence of multiple eigenvalues. Assuming
with r, from its limiting value of§ for r=1 to its asymptotic  this existence, asymptotic analysis ke allows us to find

value of 2 at infiniter. again Eq.(8) [17].
These results can be generalized for any continuous den- .
sity profile with a piecewise continuous derivatiV#4], by The authors would like to thank V. N. Goncharov, P. A.

going back to a Schobinger equation problerfil0,14—16. Raviart, R. Betti, G. Lebeau, and B. Despffer fruitful dis-
Jumps ofdp/dy at the pad layer boundaries are important tocussions.
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