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Analytic solutions of the Rayleigh equation for linear density profiles
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We consider the Rayleigh-Taylor instability in linear density profiles and we derive the exact analytic
expressions of the growth rates and associated eigenfunctions. We study the behavior of the multiple eigen-
values in both the short- and the long-wavelength limit. As the largest eigenvaluegmax reduces to the classical
Rayleigh growth rate; the other eigenvalues vanish as the front thickness tends to zero. Furthermore, the simple
expression ofgmax exact to first order in the long-wavelength limit differs from the widely used estimate
AAkg/(11AkL0), whereg is the acceleration,A the Atwood number,k the wave number of the perturbation,
andL0 the minimum density gradient scale length.

PACS number~s!: 47.20.2k, 52.35.Py
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The interface between two fluids of different densities
said to be Rayleigh-Taylor unstable@1,2# when the system is
under the effect of a constant acceleration field directed
ward the heavier fluid. This instability occurs in many inte
esting physical situations, such as implosion of inertial c
finement fusion capsules, core collapse of supernovae
electromagnetic implosions of metal liners. The linear the
of this instability has been widely studied by Chandrasek
@3# and other authors~see, e.g., Kull@4# for a review and
bibliography!. In the classical case of two semi-infinite in
compressible fluids of constant densitiesrh and r l , in a
constant acceleration fieldg pointing toward the denser fluid
in the y direction normal to the interface, the linear theo
leads to a solutiona0 cos(kx)e2kuyu1gclasst for an initial mono-
mode perturbationa0 cos(kx), where the growth rate in time
gclass is given by

gclass5S rh2r l

rh1r l
gkD 1/2

~1!

andA5(rh2r l)/(rh1r l) is the Atwood number of the sys
tem.

In this paper, we study the stability of diffuse dens
profiles, which is relevant to several important physical a
plications. Using a Fourier expansion with respect to
transverse coordinatex, we consider normal mode perturb
tions proportional to exp@gt2ikx# and vanishing aty→
6`. Combination of the hydrodynamic equations leads
the resolution of a second-order equation first obtained
Lord Rayleigh@1#:

2
d

dy S r~y!
dv
dyD1k2Fr~y!2

g

g2

dr

dyGv~y!50, ~2!

wherev(y) describes the perturbed velocity of the fluid
the y direction. For a given wave numberk, the determina-
tion of the admissible growth ratesg becomes an eigenvalu
problem, corresponding to eigenfunctionsv vanishing
at 6`. Here g(dr/dy).0 is the unstable case, whil
g(dr/dy),0 leads to stable gravity waves; in the followin
we choosedr/dy.0 andg.0.
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This equation has been solved analytically by Lord Ra
leigh for the particular case of an exponential density profi
The model of exponential transition profile has been cons
ered by several authors afterward@4,5#, as the transcendenta
equation for the growth rates has quite a simple form~in-
volving only exponentials!; nevertheless, it has to be solve
numerically. Mikaelian calculated numerically the grow
rates for any continuous profile, approximating the diffu
profile with a large number of fluid layers~P0 approxima-
tion! @6#, and obtained also explicit analytic approximat
growth rates with a moment equation method@7#. With the
use of variational calculus, Munro@8# sought the density
profiles minimizing the growth rate for a given wavelengt
but he allowed density jumps at the boundaries of the gra
density pad layer. We work here with continuous dens
profiles, looking more specifically at a piecewise linear p
file, which could also be seen as aP1 approximation of any
continuous profile.

Hence we define for anye.0,

re~y!5H r l for y<2e

r l1
rh2r l

2e
~y1e! for uyu,e

rh for y>e.

~3!

A rapid analysis of the Rayleigh equation gives theC1 be-
havior of a solutionve in the case of a continuous densi
profile. Solutions of Eq.~2! for uyu.e are easily found:

ve5C2eky for y,2e,
~4!

ve5C1e2ky for y.e.

We now focus on Eq.~2! in the interval@2e,e#. With the
change of variablez5re(y), w(z)5v@re(y)# satisfies the
following equation:

zw91w82@B2z2D#w50, ~5!

whereB52ke/(rh2r l) andD5(kg/g2)B.
Substitutingw5e2Bzf into Eq. ~5! with the additional

change of variablex52Bz leads to the Kummer equation
2967 ©2000 The American Physical Society
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x f91~b2x! f 82a f50,

with b51 and a5 1
2 (12kg/g2). The confluent hypergeo

metric functionsM (a,1,x) and U(a,1,x) are two linearly
independent solutions of this equation.

Hence, for2e,y,e, i.e., r l,z,rh , the eigenfunction
can be written as

w~z!5C1e2BzM ~a,1,2Bz!1C2e2BzU~a,1,2Bz!, ~6!

whereC1 andC2 are two constants.
Any admissible eigenvalueg is given by a value ofa

corresponding to a nontrivial solution of the matching pro
lem aty56e for ve and its derivative. This procedure lead
to a system of four equations in the four unknow
(C1 ,C2 ,C2 ,C1),

C1M 8~a,1,z1!1C2U8~a,1,z1!50,
l
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e2ke/A@C1M ~a,1,z1!1C2U~a,1,z1!#5C2 ,

e2ke/A@C1M ~a,1,z2!1C2U~a,1,z2!#5C1 ,

e2ke/A@C1M 8~a,1,z2!1C2U8~a,1,z2!#5kC1 ,

wherez652ke(6111/A). This system admits a nontrivia
solution if and only if

@M ~a,1,z2!2M 8~a,1,z2!#U8~a,1,z1!

5@U~a,1,z2!2U8~a,1,z2!#M 8~a,1,z1!. ~7!

This is a transcendental dispersion relation fora, which
gives us a family of eigenvalues~an,n>0!, leading to mul-
tiple growth ratesgn depending onA andke. The eigenfunc-
tion Vn corresponding to the eigenvaluean is given by
Vn~y!55 H U~an11,2,z1!M Fan,1,2kS y1
e

AD G1M ~an11,2,z1!UFan,1,2kS y1
e

AD G J e2k~y1e/A! for 2e<y<e

Vn~2e!1ek~e1y! for y<2e

Vn~e!2ek~e2y! for y>e.
We are most interested inV0 corresponding to the maxima
growth rate. The functionV0 is always positive and reache
its maximum forz* 52r lrh /(r l1rh), corresponding toy*
52e12er l /(r l1rh) in the case of a linear density profile
This result is important for approximate calculations of t
maximal growth rate, as these methods usually work w
approximate eigenfunctionsC exp(z*2uzu), wherez* needs
to be guessed@7#.

It is possible to solve numerically the eigenvalue probl
~7! by using the symbolic mathematics packages of Ma
ematica Software. We found in any case an infinite num
of roots to Eq.~7!. As an example, we will study the particu
lar case ke50.9, r 5rh /r l510. The eigenmodes
V0 ,V1 ,V2 , corresponding to the three largest growth ra
g050.88gclass, g150.47gclass, g250.30gclassare shown in
Fig. 1. We see thatVn has exactlyn zeros, in agreement with
the theory of Sturm-Liouville problems. We can check a
thatV0 is peaking aroundz* 52r lrh /(r l1rh)5 20

11 . Even if
ke is smaller than 1, the secondary growth rates are
totally negligible compared to the maximum growth rateg0 .

Solving numerically the dispersion relation for decreas
values ofke shows heuristically that the largest solutiona0

is increasing, whereasan for n.0 are decreasing,iani be-
coming very large.

The dispersion relation~6! for ke;0 can be investigated
theoretically by using the properties of the special functio
@9#. The same kind of analysis was done by Goncharov
specific density profiles in the frame of the isobaric mo
@10#. Our starting point is the explicit relations
h
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M 8~a,1,z!5aM~a11,2,z!,

U8~a,1,z!52aU~a11,2,z!,

zU~a11,2,z!5U~a,1,z!2aU~a11,1,z!,

and the estimations in the small-z range

M ~a,b,z!511
a

b
z1

a~a11!

b~b11!

z2

2
1O~z3!,

U~a,1,z!52
1

G~a!
@M ~a,1,z!ln z1@c~a!22c~1!#

1az@c~a11!22c~2!#1O~z2!,

c~a!5
G8~a!

G~a!
, c~a11!5c~a!11/a.

Assuming that the limit ofa exists and is finite~a0 case!, we
keep only the leading term inke, which gives forke;0,

a52
r l

rh2r l
1O~ke lnukeu!,

which finally leads to

g~ke!5AAgk@11O~ke lnukeu!#. ~8!
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This shows that, if an eigenvalue admits a limit whenke is
approaching 0, then this limit is necessarily the class
growth rateAAgk.

Going to higher order inke gives finally

Agk

g0
2 5H 11AkL0

4r

~r 21!3 F r 221

2
2r ln r G

1O†~ke!2 lnukeu‡J , ~9!

where L0 is the classical density profile scalelengthL0
5min(r/r8)52erl /(rh2rl).

Using the asymptotic expansions of the hypergeome
functions in the largea range will give the asymptotic be
havior of the other eigenvaluesan ,n.0:

2an;
p2n2

4ke
@~11A!1/21~12A!1/2#2,

that is

gn~ke!;Akg
~ke!1/2

np

1

~11A!1/21~12A!1/2.

The n2 equivalence of the eigenvaluesan is a classical
result of Sturm-Liouville problems@11#. Note that the results
obtained above have to be applied for fixedk when ke ap-
proachs 0. Looking now at the large-k range, we have to us
the asymptotic expansions written in terms of Whittak
functions @12#. After some algebra, we found that a nece
sary condition for Eq.~7! to be satisfied is

z2

24a
;1.

This leads to the classical resultgn
2;g/L0 for every growth

rategn .
It is important to notice that the leading term of the e

pansion, proportional toM /U, becomes an Airy function
whenz2 /24a;1. Going to higher order leads to the beha
ior

FIG. 1. EigenmodesV0 , V1 , V2 corresponding to the thre
largest growth rates versusy. The normalization is arbitrary.
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2;

gk

kL01vn11~kL0!1/3, ~10!

wherevn11 is the (n11)th zero of the Airy function.
Hence we got a quantification of the different grow

rates both in the small and in the long wave-number rang
As a summary, we represent in Fig. 2 the growth ratesgn
versus wave numberk, for a fixed Atwood numberA and a
stratification thicknesse. In some degree, the drawing is a
bitrary in the intermediatek range, as we only know that th
growth rates are monotonic functions of the wave num
@10#. It is important to note that, even ifgn!g0 for n.0
when the stratification thickness is small compared to
wavelength of the perturbationl52p/k, all the growth rates
are leading to the same asymptote in the small-wavelen
range. We can also illustrate on this particular density pro
the discrepancy between g0 and the formula
AAkg/(11AkL0), widely used in the inertial confinemen
fusion context withA51 @13#. This formula can be consid
ered as a fairly good approximation of the growth rate a
reproduces correctly the short- and the long-wavelength l
its

lim
k→0

g~k!5AAgk, lim
k→1`

g~k!5Ag/L0.

The difference between this formula and the exact first-or
corrections to the growth rate in the long-wavelength ran
given by Eq.~8! is illustrated in Fig. 3 by plottingLeff /L0

FIG. 3. Leff /L0 versus the density ratior, where Leff5L0@4r/
(r21)3#@(r221)/22r ln r#.

FIG. 2. Qualitative representation ofgn versus wave numberk
for a fixed Atwood numberA and a stratification thicknesse.
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versus the density ratior, where Leff5L0@4r/(r21)3#(r2

21)/22r ln r]. The functionLeff /L0 increases monotonically
with r, from its limiting value of2

3 for r 51 to its asymptotic
value of 2 at infiniter.

These results can be generalized for any continuous
sity profile with a piecewise continuous derivative@14#, by
going back to a Schro¨dinger equation problem@10,14–16#.
Jumps ofdr/dy at the pad layer boundaries are important
y

n-

ensure an appropriate potential in the Schro¨dinger-like analy-
sis to prove the existence of multiple eigenvalues. Assum
this existence, asymptotic analysis inke allows us to find
again Eq.~8! @17#.
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